摘要
本文推导出拉氏双曲型有核圆汇的一个结论,即:经过在拉氏双曲型有核圆汇ω上的每一个拉氏圆,有且仅有两个线性圆列属于ω,其中的一个属于lI(α,β),另一个属于LII(α,β)。lI(α,β)和lII(α,β)均为构成ω的抛物型线性圆列族。
This paper achieves an important conclusion of nuclear circle assembler of Laguerre's hyperbolic type.Over each Laguerre's circle which belongs to the nuclear assembler of Laguerre's hyperbolic type ω,there are only two ranks of Laguerre's linear circles in the ω.One belongs to l I(α,β),the other belongs to l I(α,β),both l I(α,β) and l I(α,β) are the linear circle family of parabolic type which can constructed the ω.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
1994年第1期27-30,共4页
Journal of Fujian Normal University:Natural Science Edition
关键词
拉氏线性圆列
有核圆汇
仿射几何
Laguerre's linear circles,linear circle family,nuclear circle assembler