摘要
设X为紧致道路连通的多面体,f:x→x为连续映射,本文证明了下面的结论:定理 h(f)≥log R~∞(f)≥log N~∞(f)其中h(f)为f的拓扑熵,R~∞(f)为f的渐近Reiderneister数,N~∞(f)为f的渐近Neilsen数。
Let X be a oompact connected polyhedron, f:x→ X be a map, We prove following theorem:Theorem: h(f)≥log R~∞(f)≥log N~∞(f) Where h(f) is a topological entropy of f; R~∞(f) is an asymptotic Reidemeister number of f: N~∞(f) is an asymptotic Nielsen number of f.
出处
《阜阳师范学院学报(自然科学版)》
1994年第2期1-4,共4页
Journal of Fuyang Normal University(Natural Science)