摘要
通过证明三个简单的引理,将复变函数积分的Jordan引理推广,使之能在更宽的范围内成立。原先的Jordan引理要求:被积函数f(z)除在上半平面有有限个孤立奇点外,处处解析并且当‖z‖→∞时一致趋于零。我们发现Jordan引理可在较宽的条件下使用:被积函数f(z)除在上半平面有有限个孤立奇点外,处处解析并且对于p>0,当‖z‖→∞时则Jordan引理就可以使用。
Generally,in the one complex variable integration,Jardan’s lemma is used only when the integrand f(z)tends uniformly tozero in arg z(0≤arg z≤π)as ‖z‖→∞. We find that Jordan’s lemmacan be used for a wider range than that mentioned above. The extendedJordan’s lemma can be described as follows. Let f(z)be analytic in the upper half of the z plane(Im z≥0),with the exception of a finite number of isolated singularities, and itonly has first order singularities in the real axis,and for p>0,if so Jordan’s lemma can also be used. where res(z_i )is the residue of f(z)e ̄(ipx) at the polez_i in the upper half of the z plane. [
出处
《甘肃科学学报》
1994年第2期26-29,共4页
Journal of Gansu Sciences
关键词
约当引理
复变函数积分
复变函数
Jordan’s lemma
complex variable integration
complex variable func -toin