期刊文献+

q变形带电Fermion相干态和q’变形的SU(3)电荷、超荷Fermion相干态 被引量:1

q-Deformed Charged Fermion Coherent States and SU(3)Charged, Hypercharged Fermion Coherent States
原文传递
导出
摘要 利用q变形的Fermion振子代数讨论了q变形的带电Fermion相干态和q变形的SU(3)电荷、超荷Fermion相干态.利用q-FermionFock空间中的基失的完闭性,得到上述两种相干态的具体表现形式.将q变形的结果与普通结果比较发现:在变形参数q=1时,q变形的带电Fermion相干态和SU(3)电荷、超荷Fermion相干态自然回到普通的带电Fermion相干态和SU(3)电荷、超荷Fermion相干态. By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3)charged,hypercharged fermion coherent states are discussed.The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in theq-fermion Fock space.By comparing the q-deformed results with the ordinary results,it is found that the q-deformed charged fermion coherent states and SU(3)charged, hypercharged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3)charged,hypercharged fermion coherent states if the deformed parameter q→1.
出处 《高能物理与核物理》 CSCD 北大核心 1994年第10期919-927,共9页 High Energy Physics and Nuclear Physics
基金 湖南省科委资助
关键词 Q变形 相干态 费米相干态 q-deformed charged fermion coherent state q-deformed SU(3)charged hypercharged fermion coherent state q-deformed fermion oscillators.
  • 相关文献

参考文献4

  • 1郝三如,1993年
  • 2Fan H Y,Commun Theor Phys,1992年,17卷,243页
  • 3Sun C P,J Phys A Math Gen,1989年,22卷,L983页
  • 4Fan H Y,Commun Theor Phys,1983年,2卷,1405页

同被引文献6

  • 1于肇贤,刘业厚,李庆林,梁碧芳.利用SU(2)_(q,s)量子代数的两参数变形振子实现讨论SU(2)_(q,s)相干态[J].高能物理与核物理,1995,19(3):258-263. 被引量:3
  • 2 MACFARLANCA J.The quantum group Suq(2) and q-analogue of the Boson operators[J].J.Phys.,1989,A22:L873.
  • 3 FAN Hong-yi,SUN Chang-pu.q-analogue charged coherent state and SU(3)charged,hypercharged coherent state[J].Commun.Theor.Phys.,1992,17:243.
  • 4 CAKRABARTI R,TAGANNATHAN R.A (p,q)-oscillator realization of two-parameterquantum algebras[J].J.Phys.,1991,A24:L711.
  • 5 JING S.The jordan-schwinger realization of two-parametric quantum slqs(2)[J].Mod.Phys.Lett.,1993,A8:543.
  • 6 BALANTEKIN A B.Algebraic approach to shape invariance[J].Phys.Rev.,1998,A57:4188. 199-09-16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部