摘要
当随机环境为一有限状态平稳遍历马氏链时,本文证明了总存在常数C1、C2、>0,使得全状态上临界Athreya-KarlinB.P.R.E.当初始个体数k增大趋于无穷时相应的灭种概率qk的渐近变化总介于和之间,其中0<β<1;α1≥α2≥0都是由所给过程完全确定的常数。
Abstract It is shown that when the random environment is a stationary ergodic Markov chain with a finite state space,as the initial population size k tends to infinity,there exist constants ci,c2>0 such that the asymptotic behaviour of the corresponding extinction probability qk of a total-state supercritical Athreya-Karlin B.P.R.E.is always bounded between c1βkK-α1 and C2βkKα2,where 0 <β<1;α1≥α2≥0 are constants determined by the B.P.R.E..
出处
《工程数学学报》
CSCD
1994年第4期87-93,共7页
Chinese Journal of Engineering Mathematics