摘要
本文研究概率度量空间中的变分原理.我们证明了概率分析中的一个序原理,应用这个序原理并引入分布值映射的下半连续性概念,把Ekeland变分原理和Caristi不动点定理推广到概率度量空间中.
We establish an ordering principle in probabilistic analysis, and by this ordering principle we show an variational principle in probabilistic metric spaces. This variational principle is a probabilistic generalization of Ekeland's variational principle. Using the probabilistic variational principle we show a fixed point theorem, which includes Caristi's fixed point theorem as a special case.
出处
《贵州大学学报(自然科学版)》
1994年第1期8-12,共5页
Journal of Guizhou University:Natural Sciences
基金
贵州省科学基金资助课题
关键词
概率度量空间
变分原理
不动点
Probabilistic metric space, Variational principle, Fixed point