摘要
群是保持簇不变的微分同胚芽所组成的群,它是通常的右等价群的一个子群。Izumiya及Matsuka(1986)考虑了函数芽对这种群的有限决定性,我们则考虑一般的映射芽的情形,得到了类似的结果。我们定义了另一个群并且把映射芽对群的有限决定性转化成了对群的有限决定性。
Group is, roughly speaking, a kind of group of germs of diffeomorphisms preserving the variety, it is a subgroup of group In paper [1],Izumiya and Matsuka considered the finite determination of function germs with respectto In this paper, the writers consider the situation of map-germs, and get somesimilar results. On the other hand, they define another group and prove that acis equivalent to So the finite determination of map-germs for is transferredto that of map-germs for
基金
贵州省科委资助
关键词
映射芽
有限决定性
群
map-germs
finite determination.