期刊文献+

摄动-数学规划配点法求解薄板几何非线性问题

COMBINATION OF THE PERTURBATION METHOD AND MATHEMATICAL PROGRAMMING COLLOCATION FOR THE GEOMETRICALLY NONLINEAR PROBLEMS OF RECTANGULAR PLATES
下载PDF
导出
摘要 本文把摄动法和数学规划配点法结合起来,分析了薄板的几何非线性问题.首先,采用摄动法将非线性偏微分方程化成一系列的线性偏微分方程.然后,用配点法得出数学规划方程并求解之.文中给出算例,结果表明了该法简便且有效. This paper presents the combination of the perturbation method and mathematical programming to analyse the geometrically nonlinear problem of rectangular plates. The nonlinear partial differential eguatiions are first converted into several sets of linear equations by using perturbations.Then the optimzation equations are deduced from linear equations by using collocation method of weighted residuals. The numerical results have shown that this method is convenient and effective for analysis of plates and shells.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 1994年第4期73-77,共5页 Journal of Hefei University of Technology:Natural Science
关键词 摄动 数学规划 配点法 薄板 几何问题 工程结构 perturbation mathematical programming collocation method geometry nonlinear
  • 相关文献

参考文献3

  • 1朱宝安.数学规划加权残值法[J].天津大学学报,1991,24(4):31-36. 被引量:4
  • 2潘立宙,王蜀.均布载荷下矩形板大挠度问题的摄动变分解[J]应用数学和力学,1986(08).
  • 3陈虬.荷载增量-最小二乘法解薄板的大挠度问题[J]西南交通大学学报,1984(03).

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部