摘要
设{Xn,n≥0}是可列非齐次马氏链,Sn(i0…,im-1,ω)表示m元状态序组(i0…,im-1)在序列(X0,…,Xm-1),(X1,…,Xm),…,(Xn-1,…,Xn+m-2)中出现的次数.本文通过(Xn,n≥0}在Wiener概率空间的一种实现,给出了关于Sn(i0,…im-1,ω)的一类对任意可列非齐次马氏链普遍成立的强大数定律.
Let {Xn,n≥0 }be a countable non-homogeneous Markov chain,and Sn(i0,…,im-1,ω)be the number of the m-tuple (i0,…,im-1)of states in the sequence of the m-dimensional random vectors (X,… ,Xm-1,), (X1, …,Xm),…, (Xn-1,…,Xn+m-2), In this paper,by use of a realization of(Xn,n≥0)in the Wieners probability space,a class of strong laws of large numbers on Sn(i0,…,im-1,ω)which hold for arbitrary countable non-homogeneous Markov chains are obtained.
出处
《河北工学院学报》
1994年第3期48-56,共9页
Journal of Hubei Polytechnic University
关键词
马氏链
强大数定律
概率空间
s:Countable non-homogenous Markov chain,Strong law of large numbers,Wiener probability spce.