摘要
环R为周期环,如果对每一x∈R有正整数m(x)≠n(x),使xm(x)=xn(x)。本文给出周期环的若干结构定理,推广和改进了谢邦杰[1],Abu-KhuzamandYaqub[2]和樊复生[3]的结果。
A ring R is called a periodic ring, if for every x∈R there is a pair m(x), n (x) of distinct positive integers such that xm(x)=xn(x).In this paper, some theorems concerning structure of periodic rings arc given.These results generalize and improve results obtained by Xie Bangjie[1] and Abu-Khzam and Yaqub[2] and Fan Fusheng [3].
出处
《黑龙江大学自然科学学报》
CAS
1994年第2期31-34,共4页
Journal of Natural Science of Heilongjiang University
关键词
周期环
布尔环
幂零元
幂等元
periodic ring, Boolean ring, nilpotent clement, idempotent element, right semi-central element.