摘要
本文在文[1]基础上进一步研究Sobolev-Galpern型方程ut=uxxt+σ(ux)x具边界条件ux(0,t)=ux(1,t)=0与u(0,t)=ux(1,t)=0的初边值问题。设σ(S)与初始函数满足适当的光滑性条件且σ(zi)(0)=0(i=1,2,…,某个n),得到强解相应的光滑性;并讨论了解的渐适性与blow-up.
This paper based on [1] further studies the initial-boundary value problems of equation of Sobolev-Galpern type ut= uxxt+ σ(ut)x with boundary conditions ux(0, t) =ux(1, t) = 0 and u(0, t) = ux(1, t) = 0. Suppose that σ(s) and the initial function satisfy certain smoothness condi-tions and σ(zi)(0) = 0(i = 1, 2, …, acertain n), obtain corresponding smoothness of the strong solution; finally the asymptotic behavior andblow-up of solution are discussea.
出处
《黑龙江大学自然科学学报》
CAS
1994年第3期52-56,26,共6页
Journal of Natural Science of Heilongjiang University
基金
黑龙江省自然科学基金
关键词
第二类边界条件
BLOW-UP
初边值问题
Nonlinear pscudoparabolic equation
second bonn-dary conditions
Smoothness
Asymptotic behavior
Blow-up.