摘要
本文首先举出反例指出了[1]定理2中关于幂零矩阵的结论不正确,然后证明了矩阵A的中心化子是交换环当且仅当A的特征多项式fA(x)等于A的最小多项式mA(x)。
This pater frist points out a mistak on the centralizer of nilpotent matrix in [1], then it proves that fA (x) = mA (x) iff the centralizer of matrix A is commutative ring.where fA (x) and mA (x) are the characteristic polymomial and least polynomial of A,respectively.
出处
《衡阳师专学报》
1994年第6期60-64,共5页
Journal of Hengyang Normal University
关键词
矩阵
中心化子
变换环
约当标准形
方阵
centralizer of a matrix jordan normal form commutative ring