摘要
我们引入一类非结合近环-零积结合分配生成近环,研究它的Abian序关系和导子.我们的主要结果是:(1)设X是零积结合分配生成约化近环N的子集,c∈N,则c=SupX当且仅当c是X的一个上界且A(X)=A(c);(2)设X={xi|i∈I},Y={yi|j∈J}是N的两个正交子集,SupX=x,SupY=y,Z={xiji|i∈I,j∈J},则Z是N的一个正交子集且SupZ=xy;(3)一个挠自由零积结合分配生成约化近环不容纳一个非零的幂零导子。
in this paper we introduce a class of nonassociative near -rings,zero-product-associative distributively generated near-ring,and study Abian's order relation and derivation in it.Our main results are:(1)let X be a subset of N which is zero-product-associative distributively generated reduced near-ring,and ∈N,then c=Sup X if and only if c is an upper of X and A(X)=A(c);(2) let X={xi|i∈I} and Y={yj|j∈J} be two orthogonal subsets of N,Sup X =x,Sup Y=y and Z= (xiyj|i∈I,j∈J},then Z is an orthogonal subset of N and Sup Z=xy;(3)a torsion-free,zero-product-associative distributively generated reduced near-ring admits no a nonzero nilpotent derivation.
出处
《湖北大学学报(自然科学版)》
CAS
1994年第3期254-258,共5页
Journal of Hubei University:Natural Science
关键词
Abian序
导子
结合环
近环
Abian's order
Nilpotent element
Torsion-free
Derivation
Orthogonal subset