摘要
设F是一分布函数,对α∈(0,1),记X_F~+(α)=sup{x;F(x)<α},X_F~-(α)=inf{x;F(x)>α},XF(α)=(X_F~+(α)+X_F~-(α))/2.本文给出了分布函数F和G之间的一种散布序,记作;对α,β∈(0,1),α<β,XF(β)-XF(α)+XF(1-α)-XF(1-β)≤XG(β)-XG(α)+XG(1-α)-XG(1-β),得到了这种序关系的若干性质,并与Lewis T和Thompson M(1982)给出的散布序作了比较,我们的序关系弱于Lewis T和Thompson M给出的散布序关系.
Let F is a distribution function,X_F ̄+(α)=sup {x,F(x) <α},X_F ̄-(α)=inf{x, F (x) >α},X_F (α)=(X_F ̄+(α) +X_F ̄- (α))/2, α∈ (0,1).In this paper, a new dispersive ordering of distributions is proposed. We denote it by.F G if and only if.for every α,β∈(0, 1), α< β, X_F(β) -X_F (α) + X_F(1-α) -X_F (1-β)≤X_G(β) X_G (α) +X_G (1-α)- X_G (1-β). The properties of it are derived and it is compared with the dispersive ordering that was proposed by Lewis J. and Thompson M. in 1982.
出处
《湖南师范大学自然科学学报》
CAS
1994年第3期10-16,共7页
Journal of Natural Science of Hunan Normal University
关键词
散布序
散布函数
分布函数
dispersive ordering
spread function
dispersive equivalence