摘要
本文研究一类定义在单位圆周上带有两个时滞的纯量反应扩散方程,在一定条件下,我们证明了方程在其平凡解处的线性化有一对简单的纯虚特征值±iω1,和一对重的纯虚特征值±iω2,且是非共振的(即ω1/ω1是无理数),然后,应用文[3]的中心流形的方法得到了一个六维常微分方程,用它来刻划方程在其平凡解邻域内的解的渐近性态。
In this paper,we study a class of scalar reaction-diffusion equations withtwo discrete time lags defined on the unit circle. Under certain conditions,we will showthat the linearization of the system at the trivial solution has a pair of purely imaginarysimple eigenvalues±iω1, a pair of purely imaginary double eigenvalues ± iω2 and themode is non-resonant(i.e.,ω1/ω2 is irrational).Using the technique of center manifoldreduction developed in Lin, So and Wu[3],we will obtain a 6-dimensional ordinary dif-ferential equation to characterize the asymptotic behaviors of the solutions to the abovesystem in a neighborbood of the trivial solution.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
1994年第2期19-27,共9页
Journal of Hunan University:Natural Sciences
基金
中国自然科学基金
加拿大自然科学与工程研究基金
关键词
反应扩散方程
滞量
分支环
Reaction-Diffusion equation,time lag,bifurcation,center manifold