摘要
讨论了第二类Volterra积分方程迭代配置法;证明了当使用分片p—1次多项式进行配置时,迭代配置解可展开为步长h的偶次幂,且首项为h2P。利用这个渐近展式,可进行Richardson外推,提高逼近解的精度.
In this paper,numerical method of the iterated collocation for theVolterra integral equation of the second kind is considered.We show that whenpiecewise polynomials of degree p-1 are used, the iterated collocation solutionadmits an error expansion in even powers of the step -size h,beginning witha term in h2p By using this asymptotic expression,Richardson's extrapolationcan be done and the accuracy of numerical solution can also be improved.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
1994年第2期74-80,共7页
Journal of South China University of Technology(Natural Science Edition)
基金
国家自然科学基金
关键词
伏特拉
积分方程
数值解
迭代配置
s:Volterra integral equations,numerical solutions,asymptotic expansion/iterated collocation methods