期刊文献+

鲁棒性增强的ART1神经网络 被引量:1

IMPROVEMENT OF ART1 NEURAL ARCHITECTURE IN ROBUSTNESS
下载PDF
导出
摘要 本文详细讨论了ART1神经网络实现算法过程中匹配因子的选择,提出了适用于消除信号噪声以及恢复信号中部份缺损的信息的匹配因子.从而提高了ART1在进行模式分类的工作性能,改善了ART1抗噪性能,一定程度实现了从部份信息丢失的信号中联想恢复出完整信号,增强了ART1的鲁棒性. In this paper we consider the original model of ART1 introduced by. Carpenter and Grossberg especially in network algorithm. A new ART1-based neurel architecture is presented in order to improve the robustness. The underlying theory and the improvement on the ART1 model are studied for classifying optical character patterns in the presence of noise or lost parts of pixels without prior knowledge. The experimental results show that our new ART1 netal networks have performed well and coincided with our analysis.
作者 张颖 余英林
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 1994年第5期72-79,共8页 Journal of South China University of Technology(Natural Science Edition)
关键词 模式识别 神经网络 鲁棒性 自适应谐振 s: pattern recognition neural network match robustness ART ART1
  • 相关文献

参考文献1

  • 1张立明,人工神经网络的模型及其应用,1993年

同被引文献15

  • 1Bengio Y, Courvilte A, Vincent P. Representation lear- ning: a review and new perspectives [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2013,35 (8) :1798-1828.
  • 2Lee D D, Seung H S. Learning the parts of objects by non- negative matrix factorization [J]. Nature, 1999,401 (6755) : 788-791.
  • 3Donoho D,Stodden V. When does non-negative matrix fac- torization give a correct decomposition into parts [ M ]. Ad- vances in Neural Information Processing Systems 16. Cam- bridge: MIT Press, 2003 : 1141-1148.
  • 4Li S Z, Hou X W, Zhang H J, et al. Learning spatially lo- calized, parts-based representation [ C ]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs:IEEE, 2001 :I-207-I-212.
  • 5Hoyer P O. Non-negative matrix factorization with sparse- ness constraints [ J ]. Journal of Machine Learning Re- search,2004,5 : 1457-1469.
  • 6Zheng W S, Lai J H, Liao S, et al. Extracting non-negative basis images using pixel dispersion penalty [ J ]. Pattern Recognition, 2012,45 ( 8 ) : 2912 - 2926.
  • 7Wang Yuan, Jia Yunde. Fisher non-negative matrix facto- rization for learning local features [ C ] // Proceedings of Asian Conference on Computer Vision. Jeju island:Sprin- ger, 2004 : 27 - 30.
  • 8Zafeiriou S, Tefas A, Bueiu I, et al. Exploiting discrimi- nant information in normegative matrix faetorization with application to frontal face verification [ J]. IEEE Transac-tions on Neural Networks ,2006,17 ( 3 ) :683-695.
  • 9Kumar B, Kotsia I, Patras I. Max-margin non-negative matrix factorization [ J ]. Image and Vision Computing, 2012,30(4) :279-291.
  • 10Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [ M ]. Advances in Neural Information Processing Systems 14. Cambri- dge: MIT Press ,2001:585-591.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部