摘要
在模式识别领域中,基于模糊集理论和模糊逻辑的模糊理论方法比基于传统集合理论和逻辑方法要更加接近人的思维和推理。模糊理论提供了一个较恰当的框架来表示人的不精确概念和推理方式。当把模糊理论引用到模式识别领域时,判断的标准“真”或“假”就变成了相对的概念,这就有可能构造这样一个智能识别系统,帮助我们在模糊的信息环境中作出精确的判断,本文主要介绍模糊理论在模式识别领域中应用的一些基本方法;给出的形状识别以及空调控温系统的具体例子说明了在模式识别中引用模糊理论的必要性和重要性.
In pattern recognition fuzzy theory based on fuzzy set theory and fuzzy logic are much closer inspirit to human thinking and reasoning than traditional set theory and logical system。Fuzzytheory provides an appropriate framework for the representation of imprecise concepts andimprecise medes of reasoning,When fuzzy theory is intreduced to pattern recognition,thecriteria of recognition,“true”or“false”,become relative notions, It is possible to build such arecogniton system which helps us take precise actions in the face of imprecise information。Fuzzytheory application to pattern recognition is intreduced,Examples in Shape recognition and air-conditioning control are given to show the necessity and importance of utilizing fuzzy methods inpattern recognition·
出处
《华南师范大学学报(自然科学版)》
CAS
1994年第3期91-96,共6页
Journal of South China Normal University(Natural Science Edition)
关键词
模糊理论
模糊集
模糊逻辑
模式识别
fuzzy theory
fuzzy set theory
fuzzy logic
pattern recognition
fuzzy control