摘要
设P与Q是平面内任意两个互不相交的凸多边形,为任一给定方向,研究并行判定P沿以平移方式移动可与Q碰撞的问题。采用S分搜索策略,在MIMD-CL模型上给出了求解此问题的并行算法,并证明了算法的正确性.最坏情况下,在超立方结构上算法的时间复杂度为O(log_2(m+n)),通讯复杂度为O(elog_2(m+n)/log_2S)
Let p=(p0,p1,…,p(n-1))and Q=(q0 ,q1,…,q(m-1))be two arbitrary disjoint convexpolygons and an arbitrary direction in plane. The determination of whether P will collidewith Q when P moves parallelly in the direction of is studied. A parallel algorithm usingthe parallel searching strategy is given. The determination problem is transformed into asearching one and then the S-way searching strategy is used on model MIMD-CL. After atmost [log_2(n+ m)/log_2S] iterations, the maximum and minimum points can be found. Inworst case,the time-complexity of this algorithm for a hypercube of e sides is O(log_2(m+n))and the communication-complexity is O(elog_2(m+n)log_2S),where S is the number ofthe processors.
出处
《华中理工大学学报》
CSCD
北大核心
1994年第6期1-4,共4页
Journal of Huazhong University of Science and Technology
基金
国家自然科学基金
863高科技基金
关键词
凸多边形
可碰撞性
并行算法
convex polygon
collision possibility
parallel searching
hypercube