摘要
基于对时间序列实质的分析,提出了旨在减少序列的随机误差影响以及提高拟合精度的AR模型参数的积分求解法.重点讨论了AR(1)模型及AR(p)模型参数的积分求解法,并与最小二乘法在计算机上进行了仿真比较.结果表明,采用积分求解法所得的AR模型参数的估计精度比最小二乘法的高.
Based on an analysis of the crux of time series,an integration method for solving thetime series AR model parameters aimed at reducing the effect of the random error and im-proving the fitting accuracy is developed.Attention is focused on the solution of parametersof the AR(1) model and AR(p)model.The results obtained are compared with those by theleast square method through computer simulation. It is shown that the integration method isbetter than the least square method in terms of the estimation accuracy.
出处
《华中理工大学学报》
CSCD
北大核心
1994年第7期64-68,共5页
Journal of Huazhong University of Science and Technology
关键词
时间序列
积分求解法
AR模型参数
time series
random error
model parameter
integrktion solving method
least square method
simulation accuracy