期刊文献+

超协调逻辑(Ⅰ)——传统超协调逻辑研究 被引量:7

Paraconsistent Logic( I ):Studied on Tradictional Paraconsistent Logic
下载PDF
导出
摘要 这是一个关于超协调逻辑研究系列的首篇,本文中,我们首先说明超协调逻辑的基本概念及其发展背景,根据对超协调性的分析我们把超协调逻辑分成三类。然后,我们介绍并剖析这三类传统的超协调逻辑的基本结果,指出它们各自的优缺点、存在的问题以及相互关系,并特别地研究了几种传统超协调逻辑与非单调逻辑的关系. Paraconsistent logics are those theories in which an inconsistent theory can be non-trivial, that is, the logics do not allow to infer every conclusion from a contradictory premise. In this report, we describe a couple of results of the study on paraconsistent logics. Firstly,we outline a paradigm of paraconsistent logics based on the analysis of the paraconsistency. After having studied traditional paraconsistent logics, we introduce a definition of new paraconsistent logic,and present some representive works of definitely new paraconsistent logics. Morever,we provide the definition and results of paracomplete logic which is closely related to paraconsistent logic. Then, we study the logical foundations of paraconsistency from the viewpoint of unification. We propose a unified preferential semantics framework for various paraconsistent logics,and a uniform tableau systems for proof theories of various paraconsistent logics. Furthermore, we compare the relation existing between paraconsistent logic and nonmonotonic logic first invented in artificial intelligence. We emphasize the importance of combining these two logics in an unified logics framework which is paraconsistent and nonmonotonic. Finally, we briefly discuss the applications of paraconsistent logic in computer science and artificial intelligence, with especially study the application of paraconsistent and nonmonotonic logic in the for-malization of commonsense reasoning.
作者 林作铨 李未
出处 《计算机科学》 CSCD 北大核心 1994年第5期1-8,共8页 Computer Science
基金 国家自然科学基金 国家基础研究攀登计划 国家高技术八六三计划与李嘉诚学术基金
  • 相关文献

参考文献4

  • 1Ayda I. Arruda,Newton C. A. Costa. On the relevant systemsP andP * and some related systems[J] 1984,Studia Logica(1-2):33~49
  • 2Graham Priest. The logic of paradox[J] 1979,Journal of Philosophical Logic(1):219~241
  • 3J. Michael Dunn. Intuitive semantics for first-degree entailments and ‘coupled trees’[J] 1976,Philosophical Studies(3):149~168
  • 4Stanis?aw Ja?kowski. Propositional calculus for contradictory deductive systems[J] 1969,Studia Logica(1):143~157

同被引文献45

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部