期刊文献+

T-方程族和KdV方程族的Miura型变换及递推算子之间的关系 被引量:1

下载PDF
导出
摘要 本文给出了联系T-方程族和KdV方程族的一个Miura型变换;并且讨论了Bcklund变换与递推算子以及Bcklund变换和Implectic算子,Symplectic算子之间的关系。
出处 《数学物理学报(A辑)》 CSCD 北大核心 1989年第3期321-326,共6页 Acta Mathematica Scientia
基金 国家自然科学基金
  • 引文网络
  • 相关文献

参考文献3

  • 1马文秀,科学通报,1986年,31卷,1756页
  • 2郑维民,科学通报,1986年,31卷,957页
  • 3李翊神,科学通报,1984年,29卷,318页

同被引文献24

  • 1谷超豪.孤立子理论和应用[M].杭州:浙江科技出版社,1990..
  • 2Blaszak M, Marciniak K. R-matrix approach to lattice integrable systems. J Math Phys, 1994, 35:4661- 4682.
  • 3Gordoa P R, Joshi N, Pickering A. On a generalized 2 + 1 dispersive water wave hierarchy. Publ RIMS (Kyoto), 2001, 37:327-347.
  • 4Ma W X, Fuchssteiner B. Integrable theory of the perturbation equations. Chaos Solitons Practals, 1996, 7(S): 1227 -1250.
  • 5Ma W X. Integrable couplings of soliton equations by perturbations I: A general theory and application to the KdV hierarchy. Methods Appl Anal, 2000, 7:21-56.
  • 6Zhang Y F, Fan E G, Zhang Y Q. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations. Phys Lett A, 2006, 357:454-461.
  • 7Xia T C, You F C, Chen D Y. A generalized cubic Volterra lattice hierarchy and its integrable couplings system. Chaos, Solitons and Fractals, 2006, 27:153 -158.
  • 8Fan E G. A lattice hierarchy and its continuous limits. Phys Lett A, 2008, 372:6368 -6374.
  • 9Fan E G, Dai H H. A differential-difference hierarchy associated with relativistic Toda and Volterra hier- archies. Phys Lett A, 2008, 372:4578-4585.
  • 10Zhang Y F, Zhang H Q. A direct method for integrable couplings of TD hierarchy. J Math Phys, 2002, 43:466-472.

引证文献1

相关主题

;
使用帮助 返回顶部