期刊文献+

Hilbert-Schmidt类上的k-拟亚正规算子 被引量:1

k-Quasihyponormal Operators on the Hilbert- Schmidt Class
下载PDF
导出
摘要 <正> 设H是复Hilbert空间,B(H)为H上有界线性算子全体所成的Banach代数。对于T∈B(H),如果T~*T的迹tr(T~*T)<∞,则称T为Hilbert-Schmidt算子,其全体记为,它是B(H)中的双边理想。 An operator T acting on a Hilbert space H is called k- quasihyponormal if {T} =T*k (T*T-TT*)Tk≥0 . Let A and B be two operators on H, one can obtain an operator τ =τAB on the class (?)2 of all Hilbert-Schmidt operators on H in such a way that τ(X)=AXB for every X∈(?)2. In this note the authors show thatLemma Assume that T is a k-quasihyponormal operator on H and Tk≠ 0 . Let {T} =(?)0∞λdEλ be the spectral decomposition of {T}. Given ε> 0 , denoteHε=(?)0εdEλH. For any non-negative integers m and n, write T*mTn =with . Then we must have ‖Smn‖≥rm+n, where r is the spectral radius of T.Theorem τ is a k- quasihyponormal operator on the Hilbert-Schmidt class (?)2 if and only if one of the following conditions holds: ( 1 ) Both A and B* are k-quasihyponormal ;( 2 ) Ak = 0 or Bk = 0 .Theorem Suppose that Ak≠0 and Bk≠ 0 . Then both A and B* are k- qua-sihyponormal operators if and only if the inequality({A}XBk+1x, XBk+1x)≥(- {B*}X*A*kAx, X*A*kAx) holds for every rank- one operator X and every vector x in H.
出处 《Journal of Mathematical Research and Exposition》 CSCD 1989年第1期57-62,共6页 数学研究与评论(英文版)
  • 相关文献

参考文献6

  • 1侯晋川,数学学报,1985年,28卷,3期,333页
  • 2侯晋川,数学杂志,1985年,5卷,1期,23页
  • 3李刚
  • 4严绍宗,中国科学.A,1987年,11期,1139页
  • 5严绍宗,科学通报,1985年,30卷,11期,810页
  • 6杜鸿科,数学年刊.A,1985年,6卷,2期,215页

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部