摘要
本文通过对多组态Dirac—Fock型自洽场基础上的GRASP程序进行扩充和改造,采用平均能级模型对类氖钛离子15个组态共89个能级一次性目洽地进行计算,计算中采用了双参量Fermi分布有限核模型,考虑了Breit修正、真空极化和自能效应对能级的修正.LS与jj耦合标号分别由最大混合系数来标定,并与其它标号系统进行了比较.计算了89个能级之间所有可能的电偶极、电四极和磁偶极的谱线跃迁概率和振子强度,振子强度的计算分别在Coulomb与Babushkin两种规范下进行,并将Babushkin规范下的偶极振子强度与用Cowan程序计算的非相对论长度公式下的计算结果进行了比较.
The GRASP program based on the multi-configuration Dirac-Fock self-consistent method have been extended and revised, so 15 configurations which consist of 89energy levels in Ne-like titanium ions can be calculated in the same self-consistent process.In the calculations, the averaged level (AL) model and the Fermi two - parameter distribution model of the nudear volume effeCt are considered, also Breit correction, vacuum polarization and self-energy effectare counted. LS and jj coupling labels are determined by the maximum combination coefficients. Electric dipole, electric quadrupole and magnetic dipole transition probabilities and oscillator strengths are calculated. The results of oscillator strengths are given in both the Coulomb and the Babushkin gauge, and the electro-dipole oscillator strengths in Babushkin gauge are also compared with the nonrelativistic counterpart.
出处
《计算物理》
CSCD
北大核心
1994年第1期91-101,共11页
Chinese Journal of Computational Physics
基金
国家高技术计划激光技术领域资助
国家自然科学基金
关键词
原子能级
振子强度
自洽场
atomic energy levels, oscillator strength, self-consistent field.