期刊文献+

两个非负定阵的Hadamard积的估计 被引量:2

Estimation of the Hadamard Product ofTwo Nonnegative Definite Matrices
下载PDF
导出
摘要 本文以Moore-Penrose逆为工具,讨论满足一定条件的非负定阵A,B的 Hadamard积A·B的估计式,得到了一系列矩阵不等式,推广了已有的结果.我们还证明了A≥0时rk(A·A^+)≥rkA. :Using Moore-Penrose generalized inverse of a partition matrix,the estimation of A ?B,theHadamard product of two matrices A and B when A≥0, B≥0 ,is discussed under some conditions. A series ofinequalities of matrices is obtained in this note. Some well-known results are expanded. In addition. rk(A·A+)≥rk A is proved.
作者 丁树良
出处 《江西师范大学学报(自然科学版)》 CAS 1994年第3期212-217,共6页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 非负定矩阵 矩阵不等式 阿达玛积 估计 hadamard product,nonnegative definite matrix,inequalities of matrices,rank of a matrix
  • 相关文献

同被引文献19

  • 1Horn R A, Johnson C R. Topics in matrix analysis [ M ]. Cambridge: Cambridge University Press, 1985.
  • 2Karlin S, Ost F. Some monotonicity properties of Schur powers of matrices and related inequalities [ J ]. Lin Alg Appl, 1985,68( 1 ) :47-65.
  • 3Cheng Guanghui, Cheng Xiaoyu, Huang Tingzhu, et al. Some bounds for the spectral radius of the Hadamard prod- uct of nonnegative matrices [ J ]. Applied Mathematics Enotes, 2005 ( 5 ) : 202 -209.
  • 4Fang Maozhong. Bounds on the eigenvalues of the Had- amard product and the Fan product of matrices [ J ]. Lin Alg App1,2007,425( 1 ) :7-15.
  • 5Huang Rong. Some inequalities for the Hadamard product and the Fan product of matrices [ J ]. Lin Alg App1,2008, 428(7) : 1551-1559.
  • 6Liu Qingbin, Chen Guoliang. On two inequalities for the Hadamard product and the Fan product of matrices [ J ]. Lin Alg Appl,2009,431 (5/6/7) :974-984.
  • 7Li Yaotang, Li Yanyan, Wang Ruiwu, et al. Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices [ J ]. Lin Alg Appl, 2010,432 ( 2/ 3 ) :536-545.
  • 8Hardy G H, Littlewood J E, P61ya G. Inequalities [ M ]. Cambridge: Cambridge University Press, 1952.
  • 9Li Houbiao, Huang Tingzhu, Shen Shuqian, et al. Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse [ J ]. Lin Alg Appl, 2007, 420( 1 ) :235-247.
  • 10Fiedler M, Markkam T. An inequality for the Hadamard product of an M matrix and inverse M matrice[J]. Lin Alg Appl,1988,101 :1-8.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部