期刊文献+

基于状态空间模型的最小熵反褶积 被引量:1

Minimum Entropy Deconvolution Based on State Space Model
下载PDF
导出
摘要 本文提出了基于状态空间模型的最小熵反褶积方法用于辨识非最小相位系统.该方法用状态空间模型对系统建模,首先用最小二乘反褶积估计对应真实系统的最小相位系统,然后用由最优于滑器估计的输入序列构造熵函数搜索具有真实相位的系统,利用主导极点的概念提出了启发式搜索算法,大大减少了搜索时间.仿真及应用于实际数据均表明本文方法是行之有效的. In this paper, the method of minimum entropy deconvolution is proposed to identify the non-mini mum phase system .The system is modelled as the state space model .Least square deconvolutde spectrum the minimum phase system corresponding to the system of the true phase,that is to estimate the amplitude spectrum of the system ,The phase of the system is searched according to the entropy which is the function of the input quence estimated by the optimal smoother,The heuristic search algorithm is proposed froposed from the idea that a system has the leading poles which dominate the transient response of the system .The searching time is greatly reduced by this algorithm.It is shown that the method is effective both fron simulation and from applying it to the real selsmic data.
作者 王英 阎平凡
出处 《控制理论与应用》 EI CAS CSCD 北大核心 1994年第3期309-314,共6页 Control Theory & Applications
关键词 反褶积 系统辨识 最小熵 deconvolution system identification system identification signal processing non-minimum phase system
  • 相关文献

参考文献3

二级参考文献4

同被引文献11

  • 1王英,阎平凡.非最小相位线性系统的可辨识性及辨识方法─—非平稳输入[J].自动化学报,1995,21(1):17-24. 被引量:1
  • 2M.D.Sacchi,戴成泰.频率域约束条件下的最小熵反褶积[J].石油物探译丛,1995(1):10-18. 被引量:1
  • 3刘金朝,丁夏完,王成国.自适应共振解调法及其在滚动轴承故障诊断中的应用[J].振动与冲击,2007,26(1):38-41. 被引量:25
  • 4冯辅周;安钢;刘建敏.军用车辆故障诊断学[M]北京:国防工业出版社,20073-5.
  • 5McFadden P D,Smith J D. Vibration Monitoring of Rolling Element Bearings by the High Frequency Resonance Technique:a Review[J].Tribology International,1984,(01):3-10.
  • 6Wiggins R A. Minimum Entropy Deconvolution[J].GEOEXPLORATION,1978,(16):21-35.
  • 7Sawalhi N,Randall R B,Endo H. The Enhancement of Fault Detection and Diagnosis in Rolling Element Bearings Using Minimum Entropy Deconvolution Combined with Spectral Kurtosis[J].Mechanical Systems and Signal Processing,2007,(21):2616-2633.doi:10.1016/j.ymssp.2006.12.002.
  • 8Sawalhi N,Randall R B. Spectral Kurtosis Enhancement Using Autoregressive Models[A].Melbourne,Australia,2005.
  • 9Endo H,Randal R B. Enhancement of Autoregressive Model Based Gear Tooth Fault Detection Technique by the Use of Minimum Entropy Deconvolution Filter[J].Mechanical Systems and Signal Processing,2007,(21):906-917.
  • 10Lee J Y,Nandi A K.Nandi. Extraction of Impacting Signals Using Blind Deconvolution[J].Journal of Sound and Vibration,1999,(05):945-962.

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部