期刊文献+

有关幂数的几个问题 被引量:1

SOME PROBLEMS ON POWERFUL NUMBERS
下载PDF
导出
摘要 设m≠0为给定整数.本文证明:1) m可真表示为两个幂数之差,其中前一个幂数为完全平方数,并且表法无穷.2) m可表示为两个非完全平方数的幂数之差,且表法无穷;当m不是16的倍数时、m可真表示为两个非完全平方数的幂数之差,而表法无穷. We prove following theorems: Th.A.If m=0 is a given integer, then m have infinitely many proper representations of the diff erencs between two powerful numbers and the former powerful number is a perfect square. Th.B. If m is a given integer,then m have infinitely many representations of the difference between two non-Square powerful numbers. Furthermore, if m is riot the multiplicity of 16, then m have infinitely many proper representations of the difference between two nonsquare powerful numbers.
作者 孙琦 袁平之
机构地区 四川大学数学系
出处 《四川大学学报(自然科学版)》 CAS CSCD 1989年第3期277-282,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金资助项目
关键词 Pell方差 刁番图方程 幂数差 Pell equation, Diophantine equation, powerful number difference, perfect square, proper representation.
  • 相关文献

参考文献2

  • 1肖戎,数学研究与评论,1987年,7卷,808页
  • 2袁平之,数学研究与评论

同被引文献8

  • 1Borwein P, Erdelyi T. Polynomials and polynomial inequalities [ M ]. New York/Berlin.. Springer, 1995.
  • 2Nathanson M B. Elementary methods in number theory [M]. Berlin/New York: Springer-Verlag, 2003.
  • 3Amdeberhan T, Medina L. A, Moll V. H. Arith- metical properties of a sequence arising from an arct- angent sum [J]. J Number Thoery, 2008, 1807: 1846.
  • 4Cilleruelo J. Squares in (1^2 + 1)(2^2 + 2)…(n^2 +1) [J]. J Number Thoery, 2008, 2488: 2491.
  • 5Hardy G, Wright E. An introduction to the theory of number [M]. Oxford: Oxford University Press, 1980.
  • 6Hong S, Liu X. Squares in (2^2 - 1)...(n^2 - 1) and p- adicvaluation [J]. Asian-Eur J Math, 2010, 3 (2) : 329.
  • 7Yang S, Togbe A. Diophantine equations with prod- ucts of consecutive values of a quadratic polynomial [J]. J Number Theory, 2011, 131: 1840.
  • 8赵建容.Stirling数模2方幂的同余式(英文)[J].四川大学学报(自然科学版),2013,50(6):1191-1194. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部