摘要
设T是权为{W_n}_0~∞的权位移。通常,T酉等价于由形式幂级数构成的函数空间H^2(β)上的乘子z:f→zf.本文证明,如果T是一个内射单侧权位移,适合r_1(T)=r(T)=1,如果f在单位圆盘的某邻域内解析,则要么f是T~*的循环向量,要么f含于T~*的有限维不变子空间.
Let T be a weighted shift with weights Wn As usually, T will be identified as mult -iplication by z on some function space H2 consisting of formal power series. It is shown in this paper that if r1 (T) =r(T) = 1, then for any function f(z) that is analystic in a neighbourhood of closes unit disc, either f(z) is a cyclic vector of T or f(z) is in some finite-dimensional invariant subspace of T .
出处
《四川大学学报(自然科学版)》
CAS
CSCD
1989年第4期424-431,共8页
Journal of Sichuan University(Natural Science Edition)
关键词
希氏空间
权位移
算子
循环向量
HiJbert space, weighted shirt, operator, cyclic vector, invariant suLspace.