摘要
本文首先给出二元函数的柯西中值定理,并通过代换转化为一元函数的柯西中值定理加以证实。在此基础上,推导出二元函数的罗必达法则,从而比较方便地解决了一些“不定式”的极限问题。
First, the cauchy Mean Value Theorem fro two- variables is given and then it is proved by transforming the two- variable function into one variable by using the Cauchy Mean Value Theorem for- one- variable- Based on the result, the I'Hopital's rule for two- variables is deduced .Therefore, some limit problcmes of indefinite forms can be resolved smoothly.
出处
《四川工业学院学报》
1989年第4期304-310,共7页
Journal of Sichuan University of Science and Technology