摘要
本文应用分岔理论研究反应扩散体系的非线性效应,对氦核反应,发现当对流效应超过某一临界植Dπ ̄2时,存在超临界寻常分岔,并求出了分岔的数学表达式。随着参数|B|的增加,新的分岔可能出现,可得到树枝分岔图,因此可期望出现混沌。
In this paper,we use bifurcation theory in dealing with the partial differential equa-tion for helium reaction diffusion system. The result shows that there is a supercritical ordi-nary bifurcation when the condition |B|>Dπ ̄2 is satisfied and the explicit expression of bifurca-tion solution is obtained.As one follows the bifurcated solutions for increasing parameter|B|,new bifurcations may be found. A sketch of a tree of bifurcating solutions may be obtainedand chaco is expected to be occurred.
出处
《南昌大学学报(理科版)》
CAS
1994年第1期27-32,共6页
Journal of Nanchang University(Natural Science)
关键词
非线性效应
分岔
核反应
扩散体系
nonlinear effect,bifurcatfon theory,nuclear reaction diffusion systems,chaos