摘要
设X是有限且连通的多面体,f是X上的幂等自映射,则在在X上同伦于f的自映射,在基本群π1(X,x0)子群Im上的作用是恒同同构。
If X is a finite and connected polyhedron, f is a power-equate self-mapping of X,then there exists self-mapping of X,such that is homotopic to f and restricted to Im .a subgroup of the fundamental group π1 (X,x ), is the identity isomorphism.
出处
《南昌航空工业学院学报》
CAS
1994年第2期49-54,共6页
Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition)
基金
江西省自然科学基金