期刊文献+

一个半线性特征值问题

A SEMILINEAR EIGENVALUE PROBLEM
下载PDF
导出
摘要 考虑下面的二阶半线性特征值问题:这里D是RN中有界连通开区域,具有光滑边界,g:D→R的有界连续函数,在D中达到正、负值.f是上二阶连续可微的实函数,且满足k1X≥f(X)≥k2X,k1,k2>0,X>0.我们得到在λ充分大时,(*)有解;并且正数λ为(1)λ线性化方程的主特征值的充要条件是λ是(1)λ(2)的分歧点.(1)λ(2)有唯一分歧点(λ>0时). In this paper, we discuss the following second semilinear eigenvalue problem:Here, D is a bounded connected open set in RN with smooth boundary. g is a continuous function from D into R a nd arrives at positive and negative values in D. fis a secondcontinuous differential function from R+ = [0,∞) into R and satisfy k1 x≥f(x)≥k2x, k1,k2 > 0, x∈R +.Equation (1)λ(2) is a semilinear eigenvalue problem with indefinite weight function,which satisfies Dirichlet boundary condition, while solving problem (* ) is to obtain itsregular solutions. We have known that the existence of solutions and the bifurcate of(1)λ (2) are closely connected with its linearization prblem as followingFor general situation, P. Hess and T. Kato have made some reseraches. here, we considerthe particular case (*) and obtain some further results.First,we point out that system (* * ) has only one positive principal eigenvalue λ*and give its describtion. Second, we prove that when λ> λ*, equation (*) has solutions.Finally, we give the following results: positive number λ is a principal eigenvalue of (* * ) ifand only if λ is a bifurcate point of equation (1)λ(2). Moreover, equation (1)λ(2) hasonly one bifurcate point (λ > 0). These results improve the results of P. aness and T. Kato.
机构地区 南京大学数学系
出处 《南京大学学报(自然科学版)》 CSCD 1994年第4期557-562,共6页 Journal of Nanjing University(Natural Science)
关键词 不定权函数 主特征值 分歧点 半线性方程 indefinite weight function, principal eigenvalue, bifurcation point
  • 相关文献

参考文献2

  • 1余庆余,非线性与泛函分析,1989年
  • 2王耀东,偏微分方程的L2理论,1989年

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部