摘要
讨论一类带有一个反凸约束的全局规划(P):globalminf(x)=CTx,s.t.x∈D={x|h(x)≤0}和g(x)≥o,其中C≤Rn,g(x),h(x)是Rn上的有限凸函数。我们给出这类问题的一个外切型算法。在不需要稳定性假定的一般意义下,证明了算法有限终止于(P)的全局解,或者算法产生一个收敛到全局解的点列。
In this paper, we are concerned with a class of global optimization problem (P) with a reverse convex constraint:global minf(x)=CTx, subject to x∈D={x|h(x)≤0}, g(x)≥0where C∈Rn, g(x),h (x) are convex finite functions on Rn. An outer cutting algorithm is presented,and under the general meanings, without the stability hypothesis[4], we prove that the algorithm either terminates at after finite steps or converges to the global optimal solution of the problem.
关键词
全局规划
反凸约束
稳定性假定
算法
global optimization
reverse convex constraint
the stability hypothesis.