摘要
证明了如下结果:设G是阶为n(≥11)的3-连通图,若对G的所有距离为2的顶,点u、v,都有d(u)+d(v)≥n-1或|N(u∩N(v)|α+1或|(u)∪N(v)|≥n-δ+1.则G是Hamilton连通的。除非G属于一些特殊图类。
Under the assumption that G is let to be a 3-connected graph of ordern(n≥11),it has proved that,if for all vertices at an interval of 2 in between(i.e. ,d(u,v)=2) u and vforG,d(u)+d(v)≥n-lor|N(u)∩N(v)|1≥a+lor|N(u)∪N(v)|≥n-δ+1holds,then G is Hamilton-connected unless G belongs to some special groups of graphs.
出处
《南京气象学院学报》
CSCD
1994年第2期244-248,共5页
Journal of Nanjing Institute of Meteorology
基金
国家自然科学基金
关键词
哈密顿连通
独立数
充分条件
Hamilton-connected, independent number,minimum degree,simple nondirection-al graph