摘要
本文证明了从有限维赋范空间X到C(Ω)型空间的等距逼近问题是肯定 B(X)为多面体或者Ω的孤立点有限.
It is proved that the IAP from a finite dimensional normed space X into C(Ω) is affir mative if and only if B(X) is polyhedral or Ω has only finitely many isolated points.
出处
《南开大学学报(自然科学版)》
CAS
CSCD
1994年第3期31-34,共4页
Acta Scientiarum Naturalium Universitatis Nankaiensis
关键词
等距离近问题
等距
赋范空间
IAP (isometric approximation problem)
isometry
ε-isometry
polyhedron