摘要
本文给出了并行任务派生的理想状态,分析和研究了积极任务派生(ETD)方法和惰性任务派生(LTD)方法,指出了这两种方法所具有的局限性,提出了一种新的并行任务派生的积极惰性化方法(ELDT)及其算法.初步研究表明ELDT方法可安全有效地增大计算粒度,在由多个商售单处理器构成的小规模并行系统上ELDT算法有效地控制计算粒度和任务派生,使并行任务的派生近似达到理想状态.
One of the most issues on exploiting effective parallelism is how to dynamically control parallel task derivation. In this paper,based on the ideal state of parallel tasks deriving, Eager Task Deriving (ETD)and Lazy Task Deriving(LDT) methods are analysed and discussed briefly, drawbacks of ETD and LTD are also presented. A practical Eager Lazy method is proposed for dynamically Deriving parallel Tasks (ELDT). The exprimental results have shown that ELDT can effectively control and increase the granularity of derived tasks whose granularity is finer than the ideal granularity that multiprocessor systems can exploit efficiently, and take an ideal or satisfied state of parallel task derivation.
出处
《软件学报》
EI
CSCD
北大核心
1994年第2期6-13,共8页
Journal of Software
基金
国家863高技术项目
国家高校博士学科点专项基金
关键词
并行任务
动态派生
并行计算机
Parallel task,dynamic derivation,task granularity, lazy task derivation.