摘要
本文讨论多项式时间多一可化归度(p-m度)的分裂间题.主要结果是:存在非零的p-m度a,对任何自然数n≥1当a分裂成n+1个度a0,a1,…,an的并时,其中至少有n对(ai,aj)(i≠j;i,j≤n)不是极小对.从而推广了Ambos-Spies中关于存在非零p—m度a不能分裂成一个极小对的结果.
This paper discusses the splitting problem of the polynomial time bounded many one degrees. The main result is that: there exists a nonzero p-m degree a such that if a is splitted by n + 1 degrees a0, a1, ...,an for any natural number n≥1,then there exist at lesst n different pairs (ai,aj) (i≠j &. i,j≤n) which are not minimal paris. This generalizes Ambos-Spies' result of which asserts that there is a nonzero p-m degree which can not be splitted by any minimal pair.
出处
《软件学报》
EI
CSCD
北大核心
1994年第4期53-59,共7页
Journal of Software
基金
国家自然科学基金
关键词
分裂
p-m度
递归论
多项式
p-m reducibility degree
minimal pair
splitting.