摘要
如果对a≤i≤b,图G的任一对顶点u、v都存在长为i-1的路Pi(u,v),则称G是[ab]-泛连通的.文中证明了关于图的泛连通性的下述结果:设G为n阶连通图,且对G中任一对距离为2的顶点u,v,有d(u)+d(v)≥n,则图G是[5n]-泛连通的当且仅当G是H连通的.此结果推广了Faudree和Schelp的一个结论.
The graph G is called a [a b] -panconnected graph if the path p_i(u,v) of length i- 1exist for all pairs of venices u and v of G, where a≤i≤b. We get the following result on panconnectivity of graphs: let G be a connected graph of ordern,if d(u) +d(v) ≥n for all pairs of venices u and v that are at distance two, then the graph G is a [5 n] -panconneded graph if and only if G is a H-Connected graph. By using the result, we may get one of the results proved by Faudree and Schelp.
出处
《山东大学学报(自然科学版)》
CSCD
1994年第1期113-116,共4页
Journal of Shandong University(Natural Science Edition)
关键词
图
泛连通性
简单图
H连通
graph
panconnectivity
[a b] -panconnectivity