摘要
本文研究了张量积图的边职结数,由于确定任意图的束积的边职结数很难,故限于讨论下列类型图的张量积:路(Ln),图(Cn)。完全图(Kn)和完全偶困(K_(m.n)),已求得路与圈、圈与圈、路与完全图、圈与完全图、路与完全偶图、圈与完全偶图、完全图与完全图、完全图与完全偶图、完全偶图与完全偶图的张亡积图的边联结数。
In this paper,the edge-binding numbers of tensor product graphs are studied.Siiice it is diffcult to determine the edge-binding numbers of product of arbitray graphs the tensor product is discussed only in the following types of graphs:path (Lm),circuit(Cm),complete graph(Km)and complete bigraph(K_m,n).We have determined the edge-bindingmumber of tensor products of the following graphs:path and circuit,circuit and circuit,pathand complete graph,circuit and complete graph,path and complete bigraph,circuit and complete bigraph,complete graph and complete graph,complete graph and complete bigraph,complete bigraph and complete bigraph.
出处
《山东矿业学院学报》
CAS
1994年第2期208-212,共5页
Journal of Shandong University of Science and Technology(Natural Science)
基金
铁道部
甘肃省自然科学基金
关键词
图
路
回路
完备图
偶图
张量积
graph
paths
circuits
complete graphs
bipartite graph
tensor products
edge-binding number.