摘要
本文证明了:在有序局部凸线性拓扑空间中,一个集合的有效点必为该集合的边界点或孤立点.本文还分别给出了使一点为一个集合的有效点、严格有效点和弱有效点的充分必要条件.此外,还证明了:在有序可分线性赋范空间中,每个非空弱紧集至少具一个有效点.
In this paper,it is proved that an efficient point of a set inan ordered locally convex linear topological space must be the boundary pointor isolated point of the set.The sufficient and necessary conditions fora point of a set to be efficient,strictly efficient or weakly efficient arerespectively given.Also,it is shown that any nonempty weakly compact setin an ordered separable normed space has at least an efficient point.
出处
《苏州大学学报(自然科学版)》
CAS
1989年第1期23-27,共5页
Journal of Soochow University(Natural Science Edition)
关键词
拓扑空间
局部凸线性
赋范空间
locally convex linear spaces
ordered locally convex linear topological spaces
normed spaces
efficient points
weakly compact sets