摘要
本文讨论了一类具有第二边值条件的弹塑性问题弱解的正则性,利用L.Nirerlberg差分方法得到了解的W^(2'2)-正则性;利用M.Giaquinta's Reverse Holder不等式方法得到了解的W^2'r)-正则性(r>2),进而,由嵌入定理得到了解的Holdlr连续性。
This paper works on thc rcguarity of generalized solutions of a kind of elastic-plastic problem with the second boundary condition. They have been proved that the solutions belong to (W^(2,)(Ω))~2×(W^(1,2)(Ω))~m, by meas of L. Nirenberg's difference maethod, and the solutions belong to (W^(2,′(Ω))~2×(W^(1,r)(Ω))~2(r>2), by meas of M. Giaquinta's Reverse Hlder inequality method. Moreover, the solntions belong to (C^(1,δ)(Ω))~2×(C^(0,δ)(Ω))~m.
出处
《苏州大学学报(自然科学版)》
CAS
1989年第2期129-135,共7页
Journal of Soochow University(Natural Science Edition)
关键词
弹塑性问题
第二边值条件
正则性
clastic-plastic problem,second boundary condition,regularity