摘要
称量B(G)=minmax{|f(u)-f(v)|:(u,v)∈E(G)}为图G=(V(G),E(G))的带宽,此处min取遍称为标号的全部双射f:V(G)→{1,2,…,|V(G)|}。L.H.Harper提出了一个关于子集的边界的重要不等式。本文对该不等式给出一个细致的改进,它在确定某些图类带宽中更为有效。
The quantity B(G) = min max{|f(u)-f(v)|:(u,v)∈E(G)} is calledthe bandwidth of a graph G=(V(G),E(G))where mim is taken over all bijectionsf: V(G)→{1,2,…,|V(G)|} called labellings.L. H. Harper presented an importantinequality related to the boundary of subsets (G),This paper gives arefinement of Harper’s inequality which will be more powerful in determiningbandwidths for several classes of graphs.
关键词
图论
连通图
标号
带宽
界线不等式
graph theory, connected graph , labelling of graph, bandwidth ofgraph, boundary inequality