摘要
本文讨论了Paris公式da/dN=C(△K)~m中C与m的相关性,证明了logda/dN—log△K平面上疲劳裂纹扩展速率函数族迥转中心存在的充要条件为(logda/dN)_j=常数,(log△K)_j=常数j=1,2,…,K,随后用Monte Carlo模拟方法研究了有关参量对C与m相关性的影响,进而对某些学者提供的研究结论和实验结果作了相应修正和合理解释。
This paper discusses the correlation between C and m in Paris Law da/dN=C(△K)~m. It is proved that the sufficient and necessary condition, for the existence of pivot point of the function family of the fatigue crack growth rate on the logda/dN—log△K plane, is (logda/dN)_j=constant; (log△K)_j=constant, j= 1,2…,k.Therefore, the effect of relevant parameters is investigated on the correlation between C and m by the Monte Carlo simulation method. Furthermore, the appropriate amendment and rational explanation are made to research conclusions and experiment results reported by some scholars.
出处
《天津大学学报》
EI
CAS
CSCD
1989年第3期18-24,共7页
Journal of Tianjin University(Science and Technology)
关键词
疲劳裂纹扩展
相关性
蒙特卡罗模拟
fatigue crack propagation, correlation, Monte Carlo simulation