摘要
在M.T.Barlow和S.J.Taylor研究的基础上,本文定义了欧基里德阿格空间中若干离散分形指标:dim_L ̄(m)(·),dim_H ̄(m)(·),δ ̄(m)(·),△ ̄(m)(·)和dim_p ̄(m)(·).本文研究了这些分形指标的若干内蕴性质,例如dim_H ̄(m)(·)=dim_H ̄(2)(·),δ ̄(2 ̄m)(·)=δ ̄(2)(·)等.为了给Z“中分形子集的研究提供更为便利的理论方法,本文推广了离散情形下的密度引理和Frost-man引理.本文最后给出了两个例子:例1是由Naudts提供的;例2来自于位势理论中一个著名的例子.
On the basis of M. T. Barlow and S. J. Taylor, this paper defines several discrete fractal indices of Euclidean Lattice Z ̄d, dim_L ̄(m),dim_H ̄(m),δ ̄(m) (· ),△ ̄(m) (· ) and dim_p ̄(m)(·), after givingtwo concepts of m -cube and sin -cube. SOme intrinsic properties of these indices are studied, forexample, dim_H ̄(m)(·)= dim_H ̄(2) (· ),δ ̄(2 ̄m) (· ) = δ ̄(2)(· ) etc.In order to provide more convenient theoretical methods to discuss the fractal subsets ofZ ̄d, the discrete analogues of density and Prostman lemmas are generalized.Two examples are given in the end: the first example is due to Naudts ; the second example is based on a well known e-camp:le in potential theory.
出处
《首都师范大学学报(自然科学版)》
1994年第3期9-19,共11页
Journal of Capital Normal University:Natural Science Edition
基金
北京市自然科学基金
关键词
离散质量维数
欧基里德网格
离散分形指标
m-cube, sin -cube, discrete mass dimension, discrete Hausdorff dimension,discrete packing dimension.