摘要
本文从熵的角度探讨了伪随机性检验问题,提出了有关序列的等分布度rn(K)概念,并证明:一序列{Xn}(0≤xn≤1)为等分布的充分必要条件是:K>1,n→∞limrnK=1。利用这一结果对几个典型伪随机序列的等分布度进行了比较,给出了它们的伪随机性优劣排序。
This paper discusses the problem of the pseudorandomness from a entropy point of view, and produces the equidistribution degree rn(k) of a sequence, moreover, proves a sequence { Xn } (0≤xn≤1 )is equidistributed if and only if K> 1,n→∞limrn(K)=1. Finally,the good and bad order of some typical pseudorandom sequences is given by computing and comparing their rn(k).
出处
《数理统计与管理》
CSSCI
北大核心
1994年第5期57-60,共4页
Journal of Applied Statistics and Management
关键词
熵
等分布度
伪随机性检验
Entropy
Sequence
Equidistribution degree
Pseudorandomness test