摘要
对于自然数n,用G(n)表示n阶群中互不同构的群的个数(同构类数),用Q_3(x)表示不超过x的自然数(n≤x)中使G(n)=3的n的个数.本文的目的是用筛法证明下面渐近公式:其中log_rx=log(log_(r-1)x),log_1x=logx,γ是Euler常数.
For natural number n let G(n)denote the number of isormorphic cla-sses of groups of order n. For any number x,let Q_3(x) denote the number of value of n which are to satisfy that n≤x, G(n)= 3 and n is sqarefree simultamously.In this paper an asymptotic formula for Q_3(x)is proved by means of Brun sieve method under some assumption,that iswhere log_rX=log(log _(r-1)x),log _1x =log x,and γis the Euler constant.
出处
《数学进展》
CSCD
北大核心
1994年第5期460-463,共4页
Advances in Mathematics(China)