摘要
l-群的一个类称作是子积类,如果它封闭于取凸l-子群及完全次直积。设u是一个子积类,G是一个l-群。令为G的直和项且G/H∈u}称作是G的一个子积根式.我们在本文中证明了一个子积类U由于积根式映射G→U(G)所决定。我们还证明了在子积类的完备格T中,一组子积类,由子积根式映射所决定,而并则由子积根式映射所决定.这是一个很漂亮的结果。
A class of l-groups is called a sub-product class,if it is closed under taking convexl-subgroups and forming completely subdirect products.Let U be a sub-product class and G beis called a sub-product radical of G.In this paper we proved that a sub-product class U is determined by the sub-product radical mapping G→U(G).And we also proved that in thethe meet is determined by the sub-product radical mapping G→whilethe join is determined by the sub-product radical mapping G→ this is beautiful result.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第2期224-229,共6页
Acta Mathematica Sinica:Chinese Series
关键词
格群
子积类
子积根式
完备格
Lattice-ordered group,sub-yproduct class,radical mapping