摘要
在本文,我们证明2维黎曼流形能实现为L3中的类空极大曲面的充要条件是相应的Ricci条件成立。
In this paper we prove that there exists a Ricci condition such that a 2-dimensional Riemannian manifold can be realized as a spacelike maximal surface in L3, and show that the spacelike surface in L3 whose mean curvature vector h satisfies △h=λh for some λ∈R is a hyperboloid or a cylinder up to a Lorentz motion in L3.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第3期309-316,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目.
关键词
极大曲面
MINKOWSKI
空间
类空曲面
Minkowski 3-spaces, spacelike surface, Ricci condition, mean curvature vector, Laplacian