摘要
本文给出两个非紧致的齐性复解析流形.用它的齐性子流形构造出两个例外对称典型域的扩充空间,并由复流形上的运动群在超圆上的限制得到了两个例外对称典型域的仿射自同胚群,它们是闭的辛子群.
In this paper, two non-compact homogeneous complex analytic manifolds are presented. We first discuss the structure of the two complex analytic manifolds and give some homogeneous complex analytic submanifolds. We apply the results obtained to the extended spaces of the two exceptional symmetric domains. Secondly, we obtain analytic flexhomeomohpism groups of the two exceptional symmetric domains from affine flexhomeomorhpism groups on the complex manifolds, and we prove that they are closed symelectic subgroups.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第3期349-361,共13页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
福建省自然科学基金资助项目.
关键词
齐性复流形
例外对称域
非紧致
homogeneous complex manifolds, exceptional symmetric domain, hypercricle, extended space, closed symelectic subgroup