摘要
设n,k为自然数,G(n)阶群中的同构类数,Fk(x)与Qk(x)分别表示不超过x的自然数中使G(n)=k的自然数、无平方因子自然数的个数.本文的目的是用Brun筛法证明Qk(x)的条件渐近公式并对Fk(x)的渐近性质做出了推测.
For natural number n and k, let G(n) denote the number of isomorphism classes of groups of order n, Fk(x) the number of n not exceeding x and G(n) = k, and Qk(x) the number of n hot exceeding x, square-free and G(n) = k. In this paper a conditional asymptotic formula is proved for Qk(x) and a conjecture is made for Fk(x) by Brun's sieve method.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第4期523-533,共11页
Acta Mathematica Sinica:Chinese Series
关键词
渐近公式
群
同构类数
Brun筛法
Brun's sieve method, asymptotic formula, prime, group, isomorphism classes